
Oblivious Storage: The Practicality of Private Access to Remote Data

Peter Williams, Radu Sion, Alin Tomescu
{petertw,sion}@cs.stonybrook.edu, alin.tomescu@gmail.com

We presentprivatefs, a fully-functional oblivious network
file system in which files can be accessed on a remote server
with computational access privacy and data confidentiality.

Oblivious RAM [1] is a construction providingaccess
pattern privacy, hiding not just data contents but the location
of reads and writes to this data. It lends itself naturally to
the creation of a block device suitable for a file system.
Due to existing results’ impractical performance overhead
this has not been previously possible. PD-ORAM [4] is a
recent ORAM implementation that offers efficient access to
parallel clients. A Linux-based deployment of PD-ORAM is
used here to design and buildprivatefs.

An initial implementation ofprivatefs was built on top
of the Linux Network Block Device (NBD) driver, which
is the simplest and most natural approach, since PD-ORAM
already provides a block interface. However, NBD supports
only serial, synchronous requests. To take advantage of the
parallel nature of PD-ORAM,privatefs is instead built on
FUSE (Filesystem in Userspace [2]).

A second attempt usedext2fuse, a FUSE-based ext2
implementation [3], by rerouting block access through PD-
ORAM. However, thread safety difficulties prevented us
from modifying it to support parallel writes or reads. Addi-
tionally, because of its nature as a block device file system,
ext2fuse requires mechanisms for allocating blocks for files,
such as block groups, free block bitmaps and indirect file
block pointers inside inodes. These mechanisms are not all
thread-safe and pose a challenge to synchronize. Moreover,
locking the code using synchronization primitives would not
result in a sufficient degree of parallelization.

Instead, we implemented our ownprivatefs using the
FUSE libraries in C++. It fully leverages the parallelism
of PD-ORAM. Moreover, it takes advantage of the non-
contiguous block labeling of PD-ORAM in a way that block-
device file systems cannot.

Following the Linux file system model, inprivatefs files
are represented by inodes. Directories are inodes containing
a list of directory entries; each directory entry is the nameof
a file or subdirectory along with its inode number. Inodes are
numbered using 256-bit values and are mapped directly to
ORAM blocks, such that inodex is stored in ORAM block
x. Inodes hold metadata such as type, size and permissions.
Both privatefs and (this instance of) PD-ORAM use 256-bit
block identifiers and 4096-byte blocks.

Because the ORAM provides random access to 256-bit
addressable blocks, a block can be allocated simply by

generating a random 256-bit number. We take advantage
of this in two ways. First, to read or write theith block
of file with inode numberx, the pair(x, i) is hashed with
the collision-resistant SHA256 hash, yielding the 256-bit
ORAM block ID for that file block. Second, when a new file
is created, a 256-bit inode number is randomly generated,
as opposed to maintaining and synchronizing access to an
inode counter.

Our design eliminates the complexity of contiguous block
device file systems and minimizes the need for locking when
writing or reading files. As opposed toext2fuse, privatefs
does not incur the overhead of maintaining free block
or inode bitmaps, grouping blocks into block groups, or
traversing indirect block pointers to read files. The potential
drawback is that sequential blocks of a given file will not
be stored contiguously in the file system. However, this is
harmless in ORAM, since there is no notion of sequential
block numbers (which would compromise access privacy).

privatefs employs exclusive locks when reading and writ-
ing directories. In addition, an LRU cache is implemented to
quickly retrieve an inode’s data given its inode number and
also for file path to inode number translation, which helps
avoid long directory traversals (and associated locking).

privatefs communicates with the ORAM server by means
of a proxy (written in Java), which receives block requests
from the file system and satisfies them using parallel con-
nections to the ORAM server. This design choice affords
us a higher degree of modularity, enabling us to connect
privatefs to other ORAM schemes in the future.

Overall, privatefs features a throughput modest when
compared to unsecured file systems. However, this is the
inherent cost of achieving privacy.privatefs is the first
file system to provide access pattern privacy, and is fully
functional and immediately usable.

REFERENCES

[1] Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on Oblivious RAMs.Journal of the ACM, 45:431–
473, May 1996.

[2] Csaba Henk and Miklos Szeredi. FUSE: Filesystem in
Userspace. Online at http://sourceforge.net/projects/fuse, 2012.

[3] Tom Scholl. ext2fuse: ext2 filesystem in userspace. Online at
http://sourceforge.net/projects/ext2fuse/, 2009.

[4] Peter Williams, Radu Sion, and Alin Tomescu. PD-ORAM:
Parallelizing and de-amortizing oblivious access.Under Sub-
mission, 2012.


